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The “CFT Ladder”

In Words:

For CFT to be a problem, you need
stable colloids that are capable of
migrating long distances,
AND you need radionuclides to
be very strongly associated with
these colloids
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CFM (Colloids Formation and Migration) Project 
Overview

Laboratory studies
Colloid-Rn interaction

Colloid Generation
Field test analysis

Field experiments
In situ test: formation &

Migration tests 
with colloids,

homologues, Rn 
tracers

Modelling studies
Solute, colloid and 

associated Rn 
transport

Colloid generation

Structure of the CFM Project

•Colloid generation
• Colloid 
transport/retardation 
and stability
• Radionuclide 
association
•Bentonite 
intercomparison
(MX-80, Febex, 
Kunigel)

•Supporting the in-situ tests
•Initiating performance-
assessment relevant 
studies on colloid 
generation and on colloid-
facilitated radionuclide 
transport

•Site characterization 
and site preparation
•Assessing the 
advective travel times
•Analyzing the 
recovered tracer 
mass
•Estimating 
dispersion 
parameters in the 
shear zone flow fields
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Grimsel Test Site

(1) Grimsel Test Site, (2) Rätrichsbodensee, 
(3) Grimselsee, and (4) Juchlistock
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The GTS Underground Facilities 

CFM in-situ experiment 
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• CFM began in 2004 (preceded by CRR, Colloid and 
Radionuclide Retardation Project, 1998-2003)

• U.S. was formal partner in 2013-2015, with informal 
involvement since 2006

• Focus has always been on bentonite colloids in fractured 
crystalline media (a granodiorite at GTS)
– Relevant Scenario:  Waste package breach allows radionuclides 

to sorb onto bentonite backfill, which subsequently erodes into 
flowing fractures, carrying radionuclides away on colloids

• Distance Scales:   ~2 – 6 meters
• Time Scales:  1 – 60 hours (mean residence times), with 

general progression of increasing time scales
• RN-doped bentonite plug emplacement in 2015

CFM (Colloids Formation and 
Migration) Project Overview



energy.gov/ne9

CFM Project Testbed

Plan View of Testing Area
Testing Control and Data Acquisition System

  

Shear Zone 

Steel Tube

Reinforcing Ribs

Sealing Packer 
filled with Mortar

Pinkel Surface Packer

Hydraulic Isolation and Control of Shear Zone Inflow via 3.5-m Diameter “Packer”

Radiological
Control Area
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Colloid-Facilitated Transport 
Tests (2002-2013)

CFM Runs 08-01, 10-01, 
10-03 (Homo. Tests), 
and 12-02 (RN Test)

2.23 m

5.71 m

CRR 31, 31 and
CFM 13-05
(RN tests)

LIT near-field boreholes

AU Tunnel

CFM06.001

Potential alternate 
flow pathway 
during CFM 13-05 

CRR 31, 32 and
CFM 13-05
(RN tests)

6 CFT Tests:  3 with tri- and tetravalent “homologues”, and 3 with radionuclides 
(also one radionuclide test without colloids, CRR 31)

5 meters

View of Planar Shear Zone
Each grey circle is a
borehole penetration
into the shear zone

All tests conducted by injecting
“cocktails” of radionuclides pre-

sorbed to bentonite colloids
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Example of Model Interpretations 
(CFM Test 12-02)

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

5 50 500

C/
M

o,
 1

/L

Time, hrs

AGA

Colloids (LIBD)

Colloids (Al)

Colloids (Ni)

Na

Cs

Ba

Np

AGA Model

Colloid Model

Na (Solute) Model

Cs Model

Cs Colloid

Cs Solute

Np Model

Np Colloid

Np Solute

Ba Model

Ba Colloid

Ba Solute

0

0.0005

0.001

0.0015

0.002

0.0025

0 100 200 300 400 500

C/
M

o,
 1

/L

Time, hrs

Colloids (LIBD)

Colloids (Al)

Colloids (Ni)

Pu

Am

Colloid Model

Pu Model

Am Model

3.E-05

3.E-04

3.E-03

8 80 800

C/
M

o,
 1

/L

Time, hrs

Conservative Tracer (AGA), Colloids,
and Selected Radionuclides Colloids, Pu, and Am

Modeling Approach:
- Model Conservative Tracer First (Amino-G Acid, or AGA)
- Then Model Colloids Using Filtration Parameters Coupled with Conservative Transport

- Account for lower colloid recovery relative to conservative tracer by filtration processes
- Then Model Radionuclides using Sorption/Desorption Parameters Coupled with Colloid Transport

- Account for lower radionuclide recovery relative to colloids by RN desorption from colloids
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Summary of 2002-2013 Results
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Upscaling Questions
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Colloid-facilitated 
transport not a problem

Colloid-facilitated transport
a potential problem

Slope = -0.69

Can a Simple Extrapolation be Applied? 

This plot is not interpreted as a literal decrease in desorption rate constants with
increasing time scale, but rather as a revelation of stronger and stronger
sorption sites (with smaller desorption rate constants) as time scales increase.

The key question is:  Are there any sorption sites with slow enough desorption rates
to be effectively irreversible over repository time and distance scales?
And if so, are there any colloids that will remain mobile over these time/distance scales?
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CFM and the “CFT Ladder”

CFM answers:
Yes, for up to 100 hrs
and 6 meters in case of
bentonite colloids in
groundwater with 
~0.7 mM ionic strength,
but extrapolation to
longer time and distance 
scales is a big uncertainty
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Recent Approach in Lab Testing:
Cs Associated with NNSS Colloids
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CFM Long-Term In-Situ Test 
(LIT):  2015-present

RN-doped bentonite
plug emplaced in 
center hole

Shear-zone flow kept the same as in CFM 12-02 test
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RN-doped bentonite 
emplacement details

Precompacted rings of FEBEX 
bentonite:

- Outer diameter: 82mm
- Inner diameter: 43mm
- Dry density: 1.65Mg/m3

- Gravimetric water 
content:~14%

2 Total Pressure
cells + piezometer
in each packer face

      
  

  
 

 

Vials inserted with open
end in (for radiological 
protection)

Vials expected to break
under swelling pressure

16
Vials
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First ~400 days of monitoring 
in near-field boreholes
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Dye tracer appeared
within 100 days from 
at least one of
16 vials

Bentonite saturated and swelled very quickly

Overcoring (excavation) initiated
in December 2018

AGA = Amino-G Acid
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Longer-Term (~4-yr) Results

Switch from red to green monitoring hole (882 days)

- Only conservative tracer and minor colloid breakthroughs in monitoring holes (6-7 cm away)
- However, very small concentrations (ppq) of 99Tc are being detected by AMS in monitoring hole
- Almost imperceptible concentrations of conservative tracer and colloids at tunnel wall (~6 m away)
- No actinides detected anywhere

Gradually increasing colloid release

Initial pulse and then decline of TDS release from bentonite

Dye tracer

More detailed information
expected from overcoring

and post-mortem

DOE will get delayed information
because of withdrawal from

formal CFM partnership in 2015
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• Insights have been gained as to how to obtain defensible answers to 
predict radionuclide transport in fractured granites. However, site 
specific studies still need to be performed to to gain confidence in the 
prediction

• The CFT ladder should be applied to evaluate the potential for 
enhanced transport with colloids, but most indications are that only very 
small fractions of strongly-sorbing radionuclides will be capable of CFT 
over repository time and distance scales

• CFT requires very slow desorption from colloids AND very slow filtration 
of the RN-bearing colloids (relative to time scales of interest)

• Interrogating such slow processes is a challenge, especially if they are 
associated with a very small fraction of colloids or very small fraction of 
sorption sites on colloids (or both)

• Intuitively, one might expect that stable colloids generated from waste-
form degradation that have radionuclides incorporated into their 
structure (as opposed to a sorption association) might pose the biggest 
risk

Summary of Knowledge Gained from CFM 
Participation



energy.gov/ne21

• Experiments have informed generic modeling approach, including 
GDSA

• Experiments have provided insights into how experimental designs can 
be tailored and improved to address site-specific and scenario-specific 
issues

• Different host rocks, EBS vs. natural system, and DPC concept can all, 
in principle, be addressed via different parameterizations of the generic 
model, with the understanding that parameterizations must be 
developed through site- and scenario-specific experimental testing

Summary of Knowledge Gained from CFM 
Participation (2)

Refer also to:

Colloid-Facilitated Radionuclide Transport:  Current State of Knowledge from a Nuclear Waste 
Repository Risk Assessment Perspective, FCRD-UFD-2016-000446, August 2016.

Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in 
GDSA-PFLOTRAN, SFWD-SFWST-2017-000117, August 2017.
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Graphical Depiction of GDSA Approach
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For complete model description, refer to:

Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in 
GDSA-PFLOTRAN, SFWD-SFWST-2017-000117, August 2017.
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Questions?
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ζ-potential of Pu(IV) intrinsic colloids and smectite
colloids and the relative stability of their suspensions
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The opposite ζ-potentials of intrinsic Pu(IV) 
colloids and smectite colloids below pH 8.6 
indicate high electrostatic attraction between 
the two colloids. This result indicates that 
Pu(IV) colloids will likely attach smectite
colloids colloids under pH conditions typical to 
the subsurface environment.

Intrinsic Pu(IV) colloids are relatively stable 
(i.e., undergo slow or no aggregation 
compared to the diffusion-limited 
aggregation rate) only at very  low salt 
concentrations (10 mM and 25 mM). They 
undergo rapid aggregation  at higher ionic 
strength
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Energy barrier contour maps of smectite and 
Pu(IV) intrinsic colloids surface interactions

The energy barrier is significantly high 
between smectite colloids and 
surrounding wall surfaces over the 
entire pH and the range, of ionic 
strengths

The energy barrier between Pu(IV) 
colloids and the surrounding stationary 
wall surfaces does not exceed ~2 kT
across the same range of ionic strength 
and pH.

Smectite colloids-surface interactions Pu(IV) colloids-surface interactions
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